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Abstract

Natural convection in horizontally heated ellipsoidal cavities is

considered in the low Grashof number limit, solving the Laplace

equation for steady thermal conduction in the unbounded solid

exterior, the Oberbeck–Boussinesq equations in the fluid-filled

interior, and matching the temperature at the interface.

In the hierarchy of equations governing the asymptotic expan-

sion for small Grashof number, at each order a forced Stokes

problem must be solved for the momentum correction. The

creeping flow is known for the sphere in closed form in terms of

the toroidal and poloidal potentials, spherical coordinates, and

spherical harmonics. Rather than attempting to generalize this

to ellipsoidal coordinates, it is re-expressed in terms of the prim-

itive pressure-velocity variables as polynomials in the Cartesian

coordinates. This form, equivalent in the sphere, suggests solu-

tions for the pressure in an ellipsoid, which can then be found

together with the velocity in closed form by the method of un-

determined coefficients. Similarly, the perturbations to the tem-

perature satisfy Poisson equations which can be solved by the

same method. Polynomial formulæ are given for the creeping

flow and the first-order correction to the temperature.

In the limit as one of the axes of the ellipsoid tends to infinity,

the three-dimensional solution reduces to a two-dimensional so-

lution for natural convection in a horizontal elliptical cylinder,

tranversely horizontally heated. This exact solution is believed

to be new too.

Introduction

Natural convection in horizontally heated cavities is a much

studied subject [2, ch. 5], often used as a test-case for com-

putational fluid dynamics [8, 7].

Most often, rectangular cavities are studied, either because of

relevance to applications like double-glazed windows [1, 14],

or simply because that facilitates meshing, particularly struc-

tured meshing. Some cavities are round though, as in natural

subterranean reservoirs [25] or in closed-porous insulation ma-

terials [18]. Revisiting those problems [23, 24] revealed that the

sphere actually proved more amenable to analysis than the box,

admitting closed-form solutions for the creeping-flow limit.

The present paper shows how the spherical solution may be gen-

eralized to the ellipsoidal cavity. Surprisingly, this generaliza-

tion, expressing the primitive velocity–pressure dependent vari-

ables as polynomials of the Cartesian coordinates turns out to be

simpler than the previous closed-form solutions for the sphere,

using spherical harmonics, spherical coordinates, and toroidal

and poloidal potentials.

Mathematical formulation

Consider an ellipsoidal cavity defined by Θ < 0 with

Θ ≡
x2

a2
+

y2

b2
+

z2

c2
−1, (1)

as shown in figure 1, oriented with one axis vertical with respect

to the uniform gravitational field g = −gj in a uniform infinite

Figure 1: A ellipsoid with arbitrary ratios of axes, defined by

the zero level-set of equation (1), aligned with the Cartesian

coordinate system. Here a temperature gradient is applied in

the x-direction and gravity in the −y-direction.

solid subject to an overall horizontal temperature gradient ∇∇∇T ∼

Tx,∞i parallel to another of the cavity’s axes.

In the surrounding solid, the steady temperature satisfies

Laplace’s equation, ∇2T = 0; in the cavity, the temperature

is coupled to the velocity uuu and pressure p by the Oberbeck–

Boussinesq equations

∇ ·uuu = 0 (2)

ρuuu ·∇uuu =−∇∇∇p+ρgβT j+µ∇2uuu (3)

ρCuuu ·∇T = k∇2T, (4)

where ρ, C, β, µ, and k are the density, specific heat, and coef-

ficients of thermal volumetric expansion, viscosity, and thermal

conductivity of the fluid. The temperature T is expressed as the

excess over that the centre of the cavity (constant, by symmetry,

and equal to the value that would prevail without the cavity).

Guided by the work on the spherical special case [23, 24], solu-

tions are sought for the limits in which the solid is a much better

conductor than the cavity and in which the cavity is small.

Solution

Thermal conduction in the surrounding solid

Insofar as the solid is a much better thermal conductor than the

fluid, it sees the cavity as an insulator and so the outward tem-

perature gradient is normal to the ellipsoid. The temperature,

therefore, is analogous to the velocity potential for ideal flow

over an ellipsoid with freestream parallel to the x-axis [10, 16].

This solution has the temperature on the ellipsoid proportional

to x, but with a different gradient to that at infinity (higher, as

the heat-lines bulge around the adiabatic cavity).

Insofar as the solid is a much better thermal conductor than the

fluid, this serves to define a Dirichlet temperature boundary con-

dition on the ellipsoid for the latter, say T = x∆T/2a.

Conduction and creeping flow

The limiting solution in the cavity as ∆T → 0 is stagnant (uuu∼ 0)



Figure 2: Stream-lines of the creeping flow in the ellipse, de-

rived from the stream-function of equation (7).

conduction (T ∼ x∆T/2a) [9, § 27].

Beginning the perturbation process by iteration [12, p. 2] yields

the Stokes problem:

∇ ·uuu0 = 0 (5)

−∇∇∇p0 +µ∇2uuu0 =−ρgβ∆T xj/2a. (6)

Two-dimensional convection in an ellipse

If c ≫ a,b, the ellipsoid defined by equation (1) becomes

two-dimensional. Ignoring the z-dimension, a stream-function

ψ(x,y) can be introduced such that uuu0 = ∇× (ψk). Taking the

z-component of the curl of equation (6) leads to the biharmonic

equation µ∇4ψ = −ρgβ∆T/2a with ψ and its gradient vanish-

ing on the boundary. As noted by Batchelor [1] for the corre-

sponding problem in a rectangle, this is analogous to the bound-

ary value problem of bending a clamped plate, with ψ there rep-

resenting the deflexion. That problem was solved in the ellipse

by Bryan [19, 20]; thus

ψ =−
ρgβ∆Ta3b4Θ2

16µ
(

3a4 +2a2b2 +3b4
) . (7)

To the best of our knowledge, this has not been previously re-

ported as the solution for creeping convection in the ellipse.

The level-sets of equation (7) are drawn in figure 2.

Note the role of the boundary function Θ from equation (1): its

square appears for the two boundary conditions on the stream-

function, ψ= 0 and ∂ψ/∂n= 0. Similarly, for the Poisson equa-

tion in an ellipse for the fully developed velocity in a duct of

elliptic section, the solution is proportional to the first power of

Θ in order to satisfy the single no-slip condition [21, 4, 22].

This solution of the two-dimensional problem by means of

the stream-function appears to be a dead end, not leading

to the ellipsoid. Its generalization to a three-dimensional

vector-potential is tractable in the sphere using the toroidal

and poloidal potentials [23], but adapting those to the ellipsoid

seems forbidding; the study of ellipsoidal harmonic functions

is ‘more complicated by far than the corresponding study of’

spherical harmonic functions [6, p. xi].

Creeping pressure in the ellipse and sphere

After computing the velocity from the stream-function of equa-

tion (7), the corresponding pressure p0 can be computed by in-

tegrating equation (6):

p0 =
ρgβ∆Ta(3a2 +b2)xy

2
(

3a4 +2a2b2 +3b4
) . (8)

Figure 3: Isobars of the creeping flow in the ellipse from equa-

tion (8); the sign is that of xy in each quadrant.

The pressure from equation (8) is drawn in figure 3.

The Stokes pressure p0 was given in the special three-

dimensional case of the sphere [23] as also proportional to

xy. That the simple symmetry of the function xy describes the

creeping pressure in both the ellipse and the sphere motivates

trying it for the general ellipsoid in a method of undetermined

coefficients.

In a sense, in the use here of Cartesian coordinates, we are tak-

ing the opposite approach to Lamé, for whom in general ‘the

study of a physical problem lead to that of a system of curvilin-

ear coordinates’ [11].

Creeping flow in the ellipsoid

For a given pressure, the Stokes equation (6) reduces to a vector

Poisson equation for the velocity or a scalar Poisson equation

for each component; say p0 = P0xy for some constant P0, then

µ∇2u0 = P0y (9)

µ∇2v0 =

(

P0 −
ρgβ∆T

2a

)

x (10)

µ∇2w0 = 0 (11)

with u0 = v0 = w0 = 0 on Θ = 0. Beside the trivial w0 = 0, the

first two Poisson equations (9)–(10) recall the two-dimensional

Poisson equation for the fully developed natural convection in

a tall horizontally heated vertical cavity of elliptic section [22],

suggesting solutions proportional to yΘ and xΘ, respectively,

with the boundary function Θ as a factor enforcing the no-

slip condition and the coefficients of proportionality depending

affinely on the undetermined P0. The latter is determined by

requiring that the velocity be divergence-free. The result is:

uuu0 =
ρgβ∆Tab2c2

(

a2yi−b2xj
)

Θ

4µ
(

a4b2 +3a4c2 +a2b4 +2a2b2c2 +3b4c2
) (12)

p0 =
ρgβ∆Ta

(

a2b2 +3a2c2 +b2c2
)

xy

2
(

a4b2 +3a4c2 +a2b4 +2a2b2c2 +3b4c2
) (13)

Equation (8) is the limit of equation (13) as c → ∞; similarly,

a function ψ can be produced such that ∇× (ψk) gives uuu from

equation (12) in each plane of constant z:

ψ =
ρgβ∆Ta3b4c2Θ2

16µ(a4b2 +3a4c2 +a2b4 +2a2b2c2 +3b4c2)
. (14)

Again, this reduces to equation (7) as c → ∞. Further, it acts as

a stream-function in each plane of constant z. The stream-lines

are all ellipses normal to and centred on the z-axis and geomet-

rically similar to the section through the ellipsoidal boundary of

the xy-plane. It is that the stream-lines are geometrically similar



rather than confocal ellipses that reduces the usefulness for this

problem of Lamé’s [17] ellipsoidal coordinates.

As b → ∞, equation (12) reduces to the unidirectional vertical

solution in the horizontally heated infinite vertical duct [22]; if,

further, c → ∞, the classical cubic profile between two parallel

vertical walls [27] is regained.

First-order correction to the temperature

The next step of iteration on the temperature equation (4) sug-

gests an expansion in Grashof number Gr ≡ 8ρ2gβ∆Ta3/µ2:

T ∼ T0 +Gr Pr T1 +O
(

Gr2
)

, (15)

where Pr ≡ µC/k is the Prandtl number, with the new term sat-

isfying

∇2T1 =
ρ

µ Gr
uuu0 ·∇T0, (16)

and vanishing on the boundary.

The right-hand side is proportional to yΘ. This is like equa-

tion (9), but slightly more complicated. To facilitate the method

of undetermined coefficients, we build up a library of functions

vanishing on the ellipsoid, i.e. having Θ as a factor, and calcu-

late their laplacians; cf. [20, § 8.1.1]. Only polynomials in x, y,

and z need be considered, since the laplacian operator is closed

in this set, and the right-hand side is of this form. Further, sym-

metry requires that T1 should be even in x and z and odd in y.

Thus:

∇2(yΘ) =
2

a2
+

6

b2
+

2

c2
, (17)

a multiple of which will match a constant on the right-hand side;

∇2(x2yΘ) = 2y

{(

5

a2
+

3

b2
+

1

c2

)

x2 +Θ

}

; (18)

etc., etc.; this suggests the form

T1 =
(

cxx2 + cyy2 + czz
2 + c0

)

yΘ∆T/a (19)

where cx,cy,cz and c0 are constants depending only on the semi-

axes a,b,c. These can be determined from a linear system by

matching the coefficients of y, yx2, yz2, and y3:

cx =b2c2(a2b2 +7a2c2 +b2c2)(5a2b2 +3a2c2 +b2c2)/d1d2

(20)

cy =a2c2(a2b2 +3a2c2 +5b2c2)(5a2b2 +3a2c2 +b2c2)/d1d2

(21)

cz =a2b2(a2b2 +3a2c2 +5b2c2)(a2b2 +7a2c2 +b2c2)/d1d2

(22)

c0 =−a2b2c2(a2b2 +3a2c2 +5b2c2)×

(a2b2 +7a2c2 +b2c2)(5a2b2 +3a2c2 +b2c2)÷

(a2b2 +3a2c2 +b2c2)d1d2, (23)

where

d1 =768(a6b6 +13a6b4c2 +35a6b2c4 +15a6c6+

7a4b6c2 +62a4b4c4 +35a4b2c6 +7a2b6c4+

13a2b4c6 +b6c6) (24)

d2 =a4b2 +3a4c2 +a2b4 +2a2b2c2 +3b4c2. (25)

T1 is displayed in figure 4.

Figure 4: The first-order correction to the temperature in the

plane of symmetry z = 0, from equation (19); T1 is positive in

the top half.

The temperature to first-order

For low finite Grashof numbers, the temperature field can be

approximated by truncating the asymptotic expansion (15) to

T0 +Gr PrT1, as shown in figure 5. These are yet to be com-

pared with numerical solutions of the full nonlinear equations

as done for the sphere [24], but experience there suggests that

these should be reasonably accurate to the level shown.

Dicussion & conclusions

The expressions for the pressure, velocity, and temperature

given above for the general ellipsoid simplify considerably

when two or three of the axes have equal length (so that the

ellipsoid becomes a prolate or oblate spheroid or sphere); such

simplifications are straightforward and omitted here.

The creeping flow solution in the ellipse was found by an edu-

cated guess at the form of the pressure field based on those in the

sphere and the ellipse, the former having been found in previ-

ous work and the latter deduced from an analogy with a problem

in the theory of elastic plates. The zeroth- and first-order tem-

perature fields were found fairly easily as polynomial solutions

of the Poisson equation with polynomial right-hand sides; this

should apply for higher-order temperature fields too, since the

right-hand sides are generated from lower-order solutions and

should remain polynomial, of steadily increasing degree.

The next step, however, is the first-order correction to the ve-

locity and pressure; this involves a forced Stokes problem.

The solution is expected to be polynomial, but no immediate

method of solution is at hand—the poloidal–toroidal decom-

position not having been generalized from the sphere. The

‘method’ of undetermined coefficients will work if provided

with sufficient candidates; perhaps a systematic approach could

be guided by the enumeration of polynomial solenoidal vector

fields in the ellipsoid used to study inviscid rotating flows; see

Vantieghem [26] and the references therein.

The zeroth-order exact solution is noteworthy in providing a

nontrivial test-case in a simply defined and completely bounded

geometry for steady three-dimensional computational fluid dy-

namics codes. In particular, it is free of the corner-singularities

which complicate lid-driven cavities [3].

Topologically, the three-dimensional creeping flow of equa-

tion (12) differs little from the two-dimensional flow in the el-

lipse as drawn in figure 2; however, if gravity or the heating

of the surrounding solid were not parallel to one of the axes of

the ellipsoid, much more complicated kinematics would result.

The creeping flow would be the sum of two or three contribu-

tions like equation (12) for the components of the conduction

temperature field along the various axes; this combination is

unlikely to have closed stream-lines.



103

104

105

Figure 5: Approximate temperature fields T0 +Gr PrT1 in the

plane z = 0 for Gr Pr as labelled.

Useful software

Verifying that the lengthy expressions above satisfied the par-

tial differential equations and boundary conditions was greatly

facilitated by SymPy [15]. Matplotlib [13] and Asymptote [5]

were used to plot the figures.
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